
_-- . N96- 12941

[

Y /

MARBLE - a System for Executing Expert Systems in Parallel

Leonard Myers, Coe Johnson and Dean Johnson.

ICADS Research Unit

California Polytechnic State University

San Luis Obispo, California 93407

April 20, 1990

66_



Summa r y .

This paper details the MARBLE 2.0 system which provides a

parallel environment for cooperating expert systems. The work has

been done in conjunction with the development of an intelligent

computer-aided design system, ICADS, by the CAD Research Unit of

the Design Institute at California Polytechnic State

University[l].

MARBLE (Multiple Accessed Rete Blackboard Linked Experts) is

a system of CLIPS shells that execute in parallel on a ten

processor, shared-memory computer. Each shell is a fully

functional CLIPS expert system tool. A copied blackboard is used

for communication between the shells to establish an architecture

which supports cooperating expert systems that execute in

parallel.

The design of MARBLE is simple, but it provides support for

a rich variety of configurations, while making it relatively easy
to demonstrate the correctness of its parallel execution

features. In its most elementary configuration, individual CLIPS

expert systems execute on their own processors and communicate

with each other through a modified blackboard. Control of the

system as a whole, and specifically of writing to the blackboard

is provided bg one of the CLIPS expert systems, an expert control

system.

Introduction.

The MARBLE project is a framework for executing simultaneous

CLIPS expert systems in a tightly-coupled shared-memory parallel

computer environment. Specifically, MARBLE modifies CLIPS 4.3[2]

to implement a blackboard system[3,4] for control of narrowly

focused expert systems that execute in parallel. The system is

specifically intended to provide a platform for experimentation

in the development of techniques for cooperative problem solving

with multiple expert systems.

Cooperative problem solving approaches are of interest

primarily for their promise to simplify the complexity of

developing solutions to large ill-defined problems and because

the use of multiple problem-solving agents can be mapped to

parallel hardware architectures with the expectation of reducing

execution time.

The Blackboard Model.

The design pbilosoph_ of MARBLE is based on the following

hypotheses:

I. Large expert systems might be better engineered in

the future as groups of independently developed

specialized systems.

2. The control of cooperating expert systems can itself

663



be implemented as an expert system.

The two above ideas are quite simply based on the attempt

to model a committee of experts, or a person who is advised by

several experts. The expertise of the individual expert is

distinct, and the manner in which the group operates is

independent of the individual areas of expertise. Since
committee work is common in human problem solving, it should be

possible to model cooperative machine expert systems.

A chairperson, or project leader, focuses attention to

specific sub-problems and maintains order. It is assumed that

the meeting area provides a blackboard on which all important

information is recorded. The chairperson uses the blackboard to

provide a description of the current statements accepted by the

team and to focus the attention of the team to the issues that

must be considered to solve the problem. Team members are not

permitted to communicate directly with each other. The 9 must
direct their comments to the leader, who uses the blackboard to

provide the communication. Often, the blackboard is described as

holding the current state of the solution to the problem and a

history of its contents can be used to analyze the problem

solving techniques of the team.

Although the blackboard model has been used in many projects

over the last decade, the implementation of cooperation is in its

infancy[5]. Therefore, it is important to develop a platform for

experimentation with various approaches.

The basic architecture of MARBLE is illustrated in figure i.

The chairperson is replaced by the control expert system, and the

team members are replaced by specific domain expert systems. The

blackboard can be read by any expert system, but only the control

expert system is permitted to modify it. In the simplest

context, the control expert sgstem examines suggestions from the

other experts and summarizes the collective wisdom.

The PEBBLE Predecessor.

The MARBLE project follows the development of PEBBLE

(Parallel Execution of Blackboard Linked Experts) J6]. PEBBLE is

an initial attempt at executing multiple expert sgstems in a

shared-memory parallel computer system under the blackboard

model. It uses the C programming language to implement a simple

expert system shell language in which the expert systems access a

shared-memory blackboard. Communication between the experts is

handled through action descriptors, which are small tables that

protect their information from mutual access errors.

By compiling the PEBBLE expert s_stem language and building

a dependency graph from the conditions used in the production

rules, efficient execution is obtained. PEBBLE also demonstrates

the effectiveness of the action descriptor approach, but the

limitations of its pattern matching make it inefficient to use in

664



the development of large expert systems.

The powerful pattern matching capability of CLIPS and the

ready availability of C-language source code make it an

attractive candidate for replacement of the PEBBLE language. The

use of CLIPS will also permit this research to focus on the

cooperation of expert systems, rather than the continued

development of the language itself. Thus MARBLE is born as the

PEBBLE framework with CLIPS shells replacing the PEBBLE language

shells.

The guiding principal in incorporating CLIPS into a

PEBBLE-like configuration of parallel processing is to make the

change as transparent to as much CLIPS code as possible. This is

necessary in order to reliably make changes in the C code, which

is an intricate fabric of interrelated functions and data

structures, and to provide a platform that will make it possible

to easily update the system with expected future versions of

CLIPS.

Shaping MARBLE from PEBBLE.

Since the use of a blackboard is central to the intended

application in the SCADS system, the primary problem is to

implement a blackboard with CLIPS expert systems. The initial

approach attempted to modify the CLIPS shell so that each expert

could access the blackboard as an additional fact list kept in

shared memory. This is complicated by the intimate connection

between the fact list and the Rete network. As the coding

changes to accomplish this transition were made, it became

apparent that it would be necessary to make such basic
alterations to CLIPS that it would jeopardize the ability to

convenient replace the modified CLIPS shells with new versions.

It is important to understand why the PEBBLE shells

cannot be directly replaced by CLIPS shells. In PEBBLE the facts

are organized in a hashed table, similar to that of a symbol

table for a compiler language. The rules reference the symbol

table to obtain the addresses of variables used in their

conditions. The blackboard facts are kept in a separate symbol

table that is allocated in shared memory. Since all blackboard

entries are uniquely defined by a "bb" prefix in their names, it

is easy to make all of the references to blackboard values use

the special symbol table while all other references use the

symbol table that is local to the processor on which the rules

are being executed.

In contrast to the organization of facts in PEBBLE, the

facts in the CLIPS system are kept in a highly linked structure

that specifically provides components to speed the execution of

pattern matching. Each fact points to every condition with which

it matches.

The rules in CLIPS are used to generate a pattern

665



network[7]. A node in the network represents the basic pattern

of any fact that would satisfy a condition of a rule. When a

fact matches a pattern, it is then further examined to bind the

variables that may be used in more specific relations that must

bold. After a fact is added to the working memory, or fact list

as it is called in CLIPS, the fact is "pushed" through the

pattern network. During this process "tokens" that represent
matches of the fact with the patterns for the conditions in the

rules are generated and distributed in the network. As a result,

the network stores a knowledge of the "matches" that have been

made at any particular point in time.

The nodes are arranged in a manner so that each path in the

network represents the set of conditions that are necessary to

fire a rule. That is, if all of the nodes in a path were to have

their conditions satisfied, the terminal node would identify a

rule whose conditions have all been met. In essence, the network

"remembers" what conditions have been met up to any particular

point in time and processes new facts from that partial match.

Thus new facts "add" to the partial match information and may

result in the completion of requirements for a rule to fire.

This algorithm provides a very efficient way of

determining the effect on the rules that should be produced when

a fact is asserted. However, in order to obtain this efficiency

the technique has deposited "memories" of the fact within the

pattern network that represents the rules. Zf a fact is deleted,

these "memories" must be removed; and in order to make the

removal efficient, it is necessary to have pointers from the

facts into the areas of the network where the "memories" are

kept.

In order for MARBLE to provide a blackboard architecture

similar to that used in PEBBLE, the domain expert programs and

the control expert must execute their own CLIPS systems on their

own processors. But this presents a real problem with respect to

how separate CLIPS systems can share the facts that would be on

the blackboard. For example, suppose rule 1 in one domain expert

references the fact, "(bb wall 2 thickness 8)". Let us suppose

that rule 2 in another domain expert references the same fact.

If the fact is asserted onto the blackboard, then both of the

domain systems need to "push" the fact through their respective

pattern networks. This means that the address of the fact must
be available to both domain systems. By using shared memory, the

address could certainly be available to both. But the fact must

also point into both of the networks to preserve the CLIPS code

that keeps track of the matches that have been "remembered" in

the network. This requires that the pattern network be in shared

memory as well.

Placing the pattern networks and the blackboard into

shared memory is not a very difficult task. But the C functions

that implement CLIPS expect for the fact list to be one highly-

linked structure. Since the blackboard facts need to be in

666



shared memory, this implies that the local facts must also be in

shared memory; or there could be two fact lists, one of which is

in shared memory while the local fact list could be in local

memory. In fact, an attempt to implement MARBLE with a shared

memory blackboard, separate from a local fact list was attempted.

The approach was abandoned as a series of changes to CLIPS code

became necessary - changes that would compromise the ease with

which new versions of CLIPS could be used for the system.

Instead of implementing the blackboard as one shared fact

list, each expert shell now keeps a copy of the blackboard in its

own fact list. At first, it may seem that this approach would

produce a system inferior to the traditional blackboard model, in

which the experts examine a common blackboard. However, just as

distributed databases have achieved advantages over traditional

localized databases, it will be noted later that there are some

major conceptual advantages to the copied blackboard approach

over the common blackboard implementation.

The implementation of MARBLE requires some basic changes to

the manner in which CLIPS shells run. In order to simply the

communication between the CLIPS shell that executes the control

expert system and the CLIPS shells that execute the domain expert

systems, all CLIPS data structures are stored in shared memory.

Also, the run loop in each CLIPS shell is modified so that an

exec function is called prior to the first rule firing, as well

as immediately after each rule firing. In the event that an

expert reaches a point where its agenda is empty, a special exec

function is called repeatedly. The exec function invokes C

functions that examine the action descriptor for the shell. As a

result, every domain CLIPS shell checks for communication from

the control expert, and the control expert CLIPS shell checks for

communication from each domain expert after firing at most one

rule.

Action Descriptors.

Action descriptors provide the link between the control

expert system and the domain expert systems. Each domain system

has an action descriptor in which it in can receive a request

from the control unit, send a request to control and record its

status to _llow control to monitor its activities.

The interaction between the control expert system and the

domain expert systems is configured by a finite-state machine

diagram to make certain that there can be no deadlocks or
uncontrolled interference. Whenever an action is initiated, the

action descriptor is modified to show the state change that has

occurred. When the action is finished, the action descriptor is

again changed. Simple checking of the action descriptor

guarantees that a change is proper, or the change is postponed.
The control and the domain systems have their own areas within

the action descriptor to permit concurrent action from both

expert systems. The fields of the action descriptor and the

66'7



possible values they represent are shown in Table I.

MARBLE Archi tecture.

When the MARBLE system is started, it will do some

initialization and then fork CLIPS loaders to each of the

processors. In particular the action descriptors for the domain

expert systems are initialized to indicate that they are "IDLE".

The system waits until all of the loaders are ready to execute

and then it begins to execute only the loader for the control

expert system. The loader prompts the user for the filename of

the CLIPS control expert. As a matter of form, the control

expert must contain rules that use the function "activate" to

initiate the loading of domain experts.

The control expert can start domain experts at any time.

The function "any idle" will tell the control expert if there are

any CLIPS shells available for a new domain expert.

Loaders.

A loader is a modified CLIPS program.

versions of loaders, as follows:

* domain loader

* control loader

* I/O loader

There are three

The domain loader is a CLIPS shell that has been modified

to examine the action descriptor of the processor on which the

loader is executing. It will examine the action descriptor

before each execution of an action on its CLIPS agenda. This

makes certain that the domain expert system will pay immediate

attention to the requests that come from control. If there are

no items on the CLIPS agenda, the domain loader will continually

examine the action descriptor, waiting for instructions from

control. When the control system wishes to have the domain

loader execute a domain expert system, it places the filename of

the CLIPS domain ruleset into the action descriptor for the

domain and then changes the action descriptor to indicate its

wish for the domain loader to execute the domain ruleset. The

domain loader reads the request in the action descriptor and

executes a standard CLIPS "load" of the rules. Then, if the file

loads without error, the domain loader changes the action

descriptor to indicate it is beginning the execution of the

domain expert system and executes a standard CLIPS startup, by

asserting a CLIPS initial-fact. After this assertion, the domain

loader runs as an enhanced CLIPS shell with a few new commands

and the transparent examination of the action descriptor prior to

the execution of each CLIPS command.

MARBLE User Functions.

MARBLE also requires the addition of several new user

functions to the CLZPS language:

668



bb assert, for the domain experts;

al_o, activate, any_idle, promote_fact, force promote,

bb retract and exit marble, for the control expert.

The functions used to affect the content of the blackboard

are bb assert, promote_fact, force promote and bb retract. These
four f_nctions use a new parser wh'_ch is a modified version of

the CLIPS assert parser. This allows them to be called with the

same syntax as the standard CLIPS assert. When a domain expert

wishes to suggest a fact for the blackboard, it calls bb assert

with the fact as an argument. This new command sets the

domain action field of the action descriptor for the domain to

REQUES_ ASSERT and places a pointer to the fact into the dargl

field. --When the control system inspects the action descriptor of

the domain expert, it will perform tbe standard assertion code,

using the address of the fact in the shared memory used by the

domain expert, and assert the fact to the fact list, with
"bb consider" as the first argument. Facts beginning with

"bb--consider" are only under consideration for posting to the

blackboard.

By using the status, control action and domain action values

of the action descriptor as a triple to identify th'e state of the

action descriptor, a finite state transition graph can be

constructed to show the valid sequences of operations. For

example, in figure 2 when a domain expert is running with no

communication pending, the state is 300. If the domain expert
executes a bb assert, the action descriptor will be changed to

301. This pr'ovides the request to the control expert. Then it

is possible that the control expert will make a request for the

domain to copy a value from the blackboard, before the control

performs the domain request and changes the domain action value.
Thus the action descriptor might become 311. If t_e control did

not make such a request, it would perform the bb_assert action

and then reset the domain action value back to 300.

By constructing the entire finite state transition graph

from the point of view as to what should be possible, it is

relatively easy to verify the code responsible for performing the
actions associated with the action descriptor states. It is

particularly important in the parallel environment to provide a

proof of the conceptual plan to prevent invalid interactions
between the various processes. In effect, the values in the

action descriptors are used as semaphores to provide mutual

exclusion in critical areas.

The control expert uses rules that evaluate the facts with

"bb consider" in their first fields, to determine if they should

be _romoted to the blackboard. If so, the control expert must

choose between using the force_promote function and promote fact.

Both functions replace the fact with one that has a first f[eld

value of only "bb" and set the action descriptors of all active

domain experts, to tell them to copy the new blackboard fact.

The control action value is set to ASSERT..BB and a pointer to the

669



fact to be copied into the domain fact lists is placed into the

cargl field. The functions differ in the form of the fact they

send to be copied. Force_promote points to a fact beginning with

"bb", while promote_fact sends a fact whose first field is

"idt consider". The first field value will tell the domain

expe?ts whether they must immediately assert the blackboard fact,

or if they can delay in accepting it.

It is natural that the control expert system should "decide"

what should be placed on the blackboard. In fact, a major reason

for the control expert is to arbitrate between the domain experts

when they make different recommendations for values of the same

entity. However, it may at first seem unusual that this

privilege is also extended to the domain experts. But consider

the following! It is often the case that with a team of human

experts, even after agreement has been reached by the group as a

whole, an individual may continue to think differently.

Moreover, if a domain expert feels that a particular attribute

should have a specific value, important advice might be lost if

the domain expert were forced to override its opinion. Control

can ignore the continual suggestion of a value , but if the

domain expert is "turned off" by a forced value, the control

expert would not be receiving the best advice. Furthermore, the

system can insulate itself from a cascade of trivial changes by

allowing the domain experts to determine when to update their
values of a blackboard fact. In the design environment, it is

very possible that small changes should be ignored in the

beginning phases of the design work, and that the domains can

execute rules to identify different tolerances to use as the

design progresses. It is also possible that when a major change

is made in a drawing, the domains may be able to recognize this

event and delay in accepting a quickly changing sequence of

values for a blackboard fact until it is stable.

If the control expert uses force_promote exclusively, the

domain experts will keep a very current copy of the blackboard.

Remember that each domain expert can execute no more than one

CLIPS action before checking its action descriptor, so the

response is immediate. Also, since each processor will

independently execute the assertion code to incorporate the fact
into its own fact list, the entire process takes just a little

over the time it would take to assert the fact into one fact

list.

When a new domain expert system is loaded, it copies all of

the blackboard values into its fact list. The control does not

execute control rules until the copy is completed to guarantee

the agreement of the blackboard contents between control and the

domain, and to prevent any contamination of the blackboard.

Thereafter, the blackboard assertions take place with a single

fact at a time. Thus, the execution of the system is only slowed

appreciably by the loading of new expert systems.

When a domain expert finishes its work, it performs a CLIPS

670



halt. Then its CLIPS loader returns to the IDLE status, awaiting

the loading of a new domain expert. When the control expert is

finished, it calls the exit marble function, which commands each

domain process to exit. Exit marble makes certain that all of

the other processes have been--killed before it exits.

Conclusions.

MARBLE has been used to implement a multi-person

blackjack simulation in which the players execute in parallel.

The design has also been used as a model for a distributed
version of the blackboard that is currently being used with three

networked computers for the first ICADS prototype system[8].

The most important result is that MARBLE provides a platform

for experimentation in the development of techniques for

synthesizing the efforts of concurrent expert systems. Moreover,

the parallel environment provides this platform without the use

of the complex scheduling algorithms that are needed in most

blackboard systems. In addition, the use of shared memory

eliminates the need for message passing, common to distributed

blackboard systems.

When a CAD workstation that can execute the specific drawing

system used in the ICADS prototype is added to the parallel

system on which MARBLE runs, MARBLE will be used to execute the

ICADS prototype with a greater degree of concurrence than the

current networked system can provide.

671



References.

1. Pohl, J., A. Chapman, and L. Myers; 'ICADS: An Intelligent

Computer-Aided Design Environment'; Proc. of ASHRAE Symposium on

Artificial Intelligence in Building Design, St. Louis, IL., June

1990.

2. NASA; 'CLIPS Architecture Manual (Version 4.3)'; Artificial

Intelligence Section, Lyndon B. Johnson Space Center, NASA, May

1989.

3. Hayes-Roth, B.; 'A Blackboard Architecture for Control';

Artificial Intelligence, Vol. 26, 1985.

4. Nii, H.P.; 'Blackboard Systems: The Blackboard Model of

Problem Solving and the Evolution of Blackboard Architectures';

The AI Magazine, Summer 1986.

5. Klein, M.; 'Conflict Resolution in Cooperative Design';

Thesis, Computer Science Dept., University of Illinois, Urbana,

IL. , 1990.

6. Myers, L. Cheng, Erikson, Nakamura, Rodriguez, Russett and

Sipantzi; 'PEBBLE: Parallel Execution of BlackBoard-Linked

Experts'; Proc. SURF Conference, Newport Beach, CA., Sept. 1988.

7. Forgy, C.L.; Rete: A Fast Algorithm for the Many Pattern/Man_

Object Pattern Match Problem'; Artificial Intelligence, Vol. 19,

No. I, 1982

8. Myers, L. and J. Pohl, 'ICADS: DEMOI - A Prototype Working

Model'; Fourth Eurographics Workshop on Intelligent CAD S_stems,

Paris, France, April 1990.

672



FIELD DESCRIPTION

status

control action

domain action

proc

cargl

carg2

dargl

current process status

action requested by control

action requested by domain

process id

fact pointer argument from control

string argument from control

fact pointer argument from domain

FIELD USAGE

FIELD

status

VALUE

-i

0

1

2

3

4

5

6

DESCRIPTION USE

ERROR error identification

IDLE free for new use

READY TO LOAD load sequence flag

LOADING -- domain is loading carg2 file

RUNNING domain is executing CLIPS

STALLED domain agenda is empty

BB COPY domain requests blackboard

HA_ EXITED domain process is dead

control action

-i

0

1

2

3

ERROR

NONE CURRENT

ASSERT BB

RETRACT BB

COMMAND EXIT

error identification

no current control command

control is sending new fact

control requests retraction

control commands an exit

domain action
p

-i

0

1

2

3

ERROR error identification

NONE CURRENT no current domain request

REQUE--ST ASSERT domain requests BB assert

unused --(domains do not request retraction)

DONE domain CLIPS has exited

TABLE 1.ACTION DESCRIPTORS

6'73



processor 1

I/O EXPERT

'S
H
A
R
E
D

l

M
E
M
O
R
Y

I BB

I BB
BB

BB

BB

BB

BB

BB

processor 0

CONTROL
EXPERT

processors 2-9

i
LOADER

LOADER

LOADER

LOADER

LOADER

LOADER

=1 LOADER

_"_ LOADER

J

Figure 1" MARBLE Architecture

m

m

I

614



Dmmlea=oBoo

promote fact

D

311

3O0

C

D

°°

done

3

bb-assert

301

promote fact

C - control response

D - domain response

O3

A

/

Figure 2: Partial State Transition Graph

675


